Metalloporphyrin Synthesis Essay

  • 1.

    Britton, G., The Biochemistry of Natural Pigments (Cambridge Texts in Chemistry and Biochemistry), Moscow: Mir, 1986.Google Scholar

  • 2.

    Semenov, A.A., Ocherki khimii prirodnykh soedinenii (Essays on the Chemistry of Natural Compounds). Novosibirsk: Nauka, 2000.Google Scholar

  • 3.

    Polevoi, V.V., Fiziologiya rastenii (Physiology of Plants), Moscow: Vysshaya Shkola, 1989.Google Scholar

  • 4.

    Golubchikov, O.A., Makrogeterotsikly, 2009, vol. 2, no. 2, p. 92.Google Scholar

  • 5.

    Byrn, M.P., Curtis, C.J., Hsiou Yu, and Khan, S.I., J. Am. Chem. Soc., 1993, vol. 115, no. 25, p. 9480.CrossRefGoogle Scholar

  • 6.

    Hill, H., A.O., Barry, C.D., and Mann, B.E., J. Am. Chem. Soc., 1973, vol. 95, no. 14, p. 4545.CrossRefGoogle Scholar

  • 7.

    Barry, C.D., Hill, H.A.O., Sadler, P.G., and Williams, R.S.P., Proc. R. Soc., London (A), 1973, vol. 334, p. 493.CrossRefGoogle Scholar

  • 8.

    Walker, F.A., J. Magn. Reson., 1974, vol. 15, no. 2, p. 201.Google Scholar

  • 9.

    Fulton, G.P. and La Mar, G.N., J. Am. Chem. Soc., 1976, vol. 98, no. 8, p. 2119.CrossRefGoogle Scholar

  • 10.

    Fulton, G.P. and La Mar, G.N., J. Am. Chem. Soc., 1976, vol. 198, no. 8, p. 2124.CrossRefGoogle Scholar

  • 11.

    Hill, H.A.O., Sadler, P.I., and Williams, R.L.P., Ann. N.Y. Acad. Sci., 1973, vol. 206, no. 2, p. 247.CrossRefGoogle Scholar

  • 12.

    Dahui Liu and Williamson, D.A., J. Am. Chem. Soc., 1999, vol. 121, no. 50, p. 11798.CrossRefGoogle Scholar

  • 13.

    Scheidt, W.R., Kastner, M.E., and Hatano, K., Inorg. Chem., 1978, vol. 17, no. 3, p. 706.CrossRefGoogle Scholar

  • 14.

    Chamaeva, O.A., Shafirovich, V.Ya., and Kitaigorodskii, A.N., Izv. Akad. Nauk SSSR. Ser. Khim., 1990, vol. 9, no. 11, p. 2523.Google Scholar

  • 15.

    Scheidt, W.R. and Reed, C.A., Inorg. Chem., 1978, vol. 17, no. 3, p. 710.CrossRefGoogle Scholar

  • 16.

    Izatt, R.M., Bradshaw, J.S., Pawlak, K., Bruening, R.L., and Tarbet, B.J., Chem. Rev., 1992, vol. 92, no. 6, p. 1261.CrossRefGoogle Scholar

  • 17.

    Schiedt, W.R. and Reed, C.A., Inorg. Chem., 1978, vol. 17, no. 3, p. 710.CrossRefGoogle Scholar

  • 18.

    Kirnes, I.F., Reed, C.A., and Schiedt, W.R., J. Am. Chem. Soc., 1977, vol. 99, no. 9, p. 1093.CrossRefGoogle Scholar

  • 19.

    Chamaeva, O.A. and Kitaigorodskii, A.N., Izv. Akad. Nauk SSSR. Ser. Khim., 1990, vol. 6, no. 5, p. 1003.Google Scholar

  • 20.

    Chamaeva, O.A. and Kitaigorodskii, A.N., Izv. Akad. Nauk SSSR. Ser. Khim., 1989, vol. 5, no. 6, p. 1263.Google Scholar

  • 21.

    Chamaeva, O.A. and Kitaigorodskii, A.N., Izv. Akad. Nauk SSSR. Ser. Khim., 1989, vol. 5, no. 6, p. 1269.Google Scholar

  • 22.

    Byrn, M.P., Curtis, C.J., Hsiou Yu, and Khan, S.I., J. Am. Chem. Soc., 1993, vol. 115, no. 25, p. 9480.CrossRefGoogle Scholar

  • 23.

    Bacon, G.E., Curry, N.A., and Wilson, S.A., Proc. R. Soc., London (A), 1964, vol. 279, p. 98.CrossRefGoogle Scholar

  • 24.

    Byrn, M.P., Curtis, C.J., and Goldberg, I., J. Am. Chem. Soc., 1991, vol. 113, no. 17, p. 6549.CrossRefGoogle Scholar

  • 25.

    Byrn, M.P., Curtis, C.J., and Khan, S.I., J. Am. Chem. Soc., 1990, vol. 112, no. 5, p. 1865.CrossRefGoogle Scholar

  • 26.

    Blomker, J. and Frey, W., Z. Kristallogr. New Cryst. Struct., 2000, vol. 215, no. 2, p. 263.Google Scholar

  • 27.

    Konarev, D.V., Yudanova, E.I., and Neretin, I.S., Synth. Met., 2001, vol. 121, no. 21, p. 1125.CrossRefGoogle Scholar

  • 28.

    Neretin, I.S. and Slovokhotov, Yu.L., Usp. Khim., 2004, vol. 73, no. 5, p. 492.CrossRefGoogle Scholar

  • 29.

    Konarev, D.V., Neretin, I.S., Slovokhotov, Y.L., and Yudanova, E.I., Chem. Eur. J., 2001, vol. 7, no. 12, p. 2605.CrossRefGoogle Scholar

  • 30.

    Boyd, P.D.W., Hodgson, M.C., Rickard, C.E.F., Oliver, A.G., Chaker, L., Brothers, P.J., Bolskar, R.D., Tharn, F.S., and Reed, C.A., J. Am. Chem. Soc., 1999, vol. 121, no. 45, p. 10487.CrossRefGoogle Scholar

  • 31.

    Konarev, D.V., Khasanov, S.S., and Saito, G., Chem. Eur. J., 2003, vol. 9, no. 12, p. 3837.CrossRefGoogle Scholar

  • 32.

    Hamor, M.J., Hamor, T.A., and Hoard, J.L., J. Am. Chem. Soc., 1964, vol. 86, no. 5, p. 1938.CrossRefGoogle Scholar

  • 33.

    Golder, A.J., Milgrom, L.R., and Nolan, K.B., J. Chem. Soc., Chem. Commun., 1987, vol. 10, no. 23, p. 1788.CrossRefGoogle Scholar

  • 34.

    Milgrom, L.R., Jones, C.C., and Harriman, A., J. Chem. Soc., Perkin. Trans., 1988, vol. 2, no. 1, p. 71.Google Scholar

  • 35.

    Antina, E.V., Lebedeva, N.Sh., and V’yugin, A.I., Koord. Khim., 2001, vol. 27, no. 10, p. 784.Google Scholar

  • 36.

    Delmon, B., Introduction a la cinétique hétérog`ene, Moscow: Mir, 1972.Google Scholar

  • 37.

    Suvorov, A.V., Termodinamicheskaya khimiya paroobraznogo sostoyaniya (Thermodynamical Chemistry of Vapor State), Leningrad: Khimiya, 1970.Google Scholar

  • 38.

    Barannikov, V.P., V’yugin, A.I., Antina, E.V., and Krestov, G.A., Zh. Fiz. Khim., 1990, vol. 64, no. 3, p. 700.Google Scholar

  • 39.

    V’yugin, A.I., Antina, E.V., and Berezin, M.B., Dostizheniya i problemy teorii sol’vatatsii: strukturnotermodinamicheskie aspekty (Progress and Problems in the Theory of Solvation: Structural and Thermodynamic Aspects), Moscow: Nauka, 1998, p. 208.Google Scholar

  • 40.

    V’yugin, A.I., Berezin, M.B., and Antina, E.V., Biologicheski aktivnye veshchestva v rastvorakh: struktura, termodinamika, reaktsionnaya sposobnost’ (Biologically Active Substances in Solutions: Structure, Thermodynamics, and Reactivity), Moscow: Nauka, 2001, p. 298.Google Scholar

  • 41.

    Barannikov, V.P., V’yugin, A.I., Antina, E.V., and Krestov, G.A., Zh. Fiz. Khim., 1990, vol. 64, no. 3, p. 700.Google Scholar

  • 42.

    Antina, E.V., Barannikov, V.P., V’yugin, A.I., Nikiforov, M.Yu., and Krestov, G.A., Zh. Neorg. Khim., 1990, vol. 35, no. 2, p. 400.Google Scholar

  • 43.

    V’yugin, A.I., Antina, E.V., Berezin, M.B., Lebedeva, N.Sh., and Barannikov, V.P., Khimiya rastvorov i tekhnologiya zhidkofaznykh materialov. Dostizheniya i perspektivy (Chemistry of Solutions and Technology of the Liquid Phase Materials. Progress and Perspectives). Ivanovo: IKhR RAN, 2006, p. 86.Google Scholar

  • 44.

    Antina, E.V., Berezin, M.B., V’yugin, A.I., and Krestov, G.A., Zh. Fiz. Khim., 1994, vol. 68, no. 9, p. 1603.Google Scholar

  • 45.

    V’yugin, A.I., Antina, E.V., and Krestov, G.A., Zh. Fiz. Khim., 1993, vol. 67, no. 3, p. 463.Google Scholar

  • 46.

    V’yugin, A.I., Antina, E.V., and Krestov, G.A., Izv. Akad. Nauk. Ser. Khim., 1993, vol. 11, no. 5, p. 846.Google Scholar

  • 47.

    Krestov, G.A., Vyugin, A.J., Barannikov, V.P., and Antina, E.V., Thermochim. Acta., 1990, vol. 169, p. 103.CrossRefGoogle Scholar

  • 48.

    Antina, E.V., Chernyshev, D.V., V’yugin, A.I., and Krestov, G.A., Zh. Neorg. Khim., 1991, vol. 36, no. 10, p. 2581.Google Scholar

  • 49.

    V’yugin, A.I., Antina, E.V., and Krestov, G.A., Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 2, p. 385.Google Scholar

  • 50.

    V’yugin, A.I., Antina, E.V., Chernyshev, D.V., and Krestov, G.A., Izv. Akad. Nauk SSSR. Ser. Khim., 1992, no. 7, p. 1545.Google Scholar

  • 51.

    V’yugin, A.I., Antina, E.V., and Krestov, G.A., Zh. Fiz. Khim., 1993, vol. 67, no. 3, p. 463.Google Scholar

  • 52.

    Antina, E.V., V’yugin, A.I., and Krestov, G.A., Izv. Akad. Nauk. Ser. Khim., 1993, no. 5, p. 850.Google Scholar

  • 53.

    Antina, E.V., Chernyshev, D.V., V’yugin, A.I., Kulinich, V.P., Barannikov, V.P., and Krestov, G.A., Zh. Fiz. Khim., 1991, vol. 65, no. 4, p. 964.Google Scholar

  • 54.

    V’yugin, A.I., Antina, E.V., and Krestov, G.A., Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 5, p. 1149.Google Scholar

  • 55.

    V’yugin, A.I., Antina, E.V., and Krestov, G.A., Izv. Akad. Nauk, Ser. Khim., 1993, no. 5, p. 846.Google Scholar

  • 56.

    Antina, E.V., Berezin, M.B., V’yugin, A.I., and Krestov, G.A., Zh. Fiz. Khim., 1994, vol. 68, no. 9, p. 1603.Google Scholar

  • 57.

    Antina, E.V., V’yugin, A.I., Lebedeva, N.Sh., and Krestov, G.A., Zh. Fiz. Khim., 1995, vol. 69, no. 3, p. 472.Google Scholar

  • 58.

    Antina, E.V., Lebedeva, N.Sh., Berezin, M.B., V’yugin, A.I., and Krestov, G.A., Zh. Fiz. Khim., 1996, vol. 70, no. 9, p. 1625.Google Scholar

  • 59.

    Antina, E.V., V’yugin, A.I., and Lebedeva, N.Sh., Izv. Vuzov. Khim. i Khim. Tekhnol., 1998, vol. 41, no. 6, p. 29.Google Scholar

  • 60.

    Antina, E.V., and Lebedeva, N.Sh., V’yugin, A.I., Stroikova, I.K., Zh. Fiz. Khim., 1998, vol. 72, no. 4, vol. 41, p. 530.Google Scholar

  • 61.

    Lebedeva, N.Sh., Antina, E.V., and V’yugin, A.I., Zh. Fiz. Khim., 1999, vol. 73, no. 6, p. 1051.Google Scholar

  • 62.

    Khelevina, O.G., Rumyantseva, S.V., Antina, E.V., and Lebedeva, N.Sh., Zh. Obshch. Khim., 2001, vol. 71, no. 7, p. 1124.Google Scholar

  • 63.

    Balantseva, E.V., Antina, E.V., Berezin, M.B., and V’yugin, A.I., Zh. Neorg. Khim., 2005, vol. 50, no. 10, p. 1676.Google Scholar

  • 64.

    Berezin, B.D., Koordinatsionnye svoistva porfirinov i ftalotsianina (Coordination Properties of Porphyrins and Phthalocyanine), Moscow: Nauka, 1978.Google Scholar

  • 65.

    Askarov, K.A., Berezin, B.D., Bystritskaya, E.V., Golubchikov, O.A., Koifman, O.I., Kuz’mitskii, V.A., Mairanovskii, V.G., Ponomarev, G.V., Rish, M.A., Smirnov, B.R., Solov’ev, K.N., Tsvirko, M.P., and Yartsev, E.I., Porfiriny: spektroskopiya, spektrokhimiya, primenenie (Porphyrins: Spectroscopy, Spectrochemistry, and Application), Moscow: Nauka, 1987.Google Scholar

  • 66.

    Grishina, M.A., Bartashevich, E.V., Potemkin, V.A., Antina, E.V., and Balantseva, E.V., Abstract of Papers, VIII-th Scientific Conference on Ogranic Chemistry, Kazan, 2005, p. 129.Google Scholar

  • 67.

    Balantseva, E.V., Antina, E.V., and Berezin, M.B., Abstract of Papers, XXVI-th Scientific Session of Russian Seminar on the Chemistry of Porphyrins and Their Analogues, Ivanovo, 2004, p. 10.Google Scholar

  • 68.

    Balantseva, E.V., Antina, E.V., and Berezin, M.B., Abstract of Papers, International Scientific Conference “Kinetcs and Mechanisms of Crystallizationi,” Ivanovo, 2004, p. 66.Google Scholar

  • 69.

    Balantseva, E.V., Antina, E.V., and Berezin, M.B., Abstract of Papers, XXV-th Scientific Session of the Russian Seminar on the Chemistry of Porphyrins and Their Analogues, Ivanovo, 2004, p. 53.Google Scholar

  • 70.

    Antina, E.V., Barannikov, V.N., Berezin, M.B., and V’yugin, A.I., Problemy khimii rastvorov i tekhnologii zhidkofaznykh materialov (Problems in the Chemistry of Solutions and Technology of the Liquid Phase Materials), Ivanovo: IKhR RAN, 2001, p. 217.Google Scholar

  • Since their discovery in the 1960s, several works have been conducted to isolate and characterize the enzymes belonging to the cytochrome P-450 family [1,2]. This superfamily is constituted by cysteinato-heme enzymes and exists in all forms of life; e.g., plants, bacteria, and mammals. P-450 enzymes play a key role in the oxidative transformation of endogeneous and exogeneous molecules [3]; their active site contains an iron(III) protoporphyrin-IX covalently linked to the protein by the sulfur atom of a proximal cysteine ligand (Figure 1) [3]. These enzymes are able to catalyze several reactions such as monooxygenation (mainly the hydroxylation of saturated carbon-hydrogen bonds, and epoxidation of unsaturated bonds), dehydrogenation, C=N bond cleavage, and oxidative deformylation; they display peroxidase and oxidase activity [4].

    Inspired by the reactivity of this biological system, chemists have concentrated efforts on designing routes to obtain new synthetic porphyrins and metalloporphyrins (MPs), aiming to mimic the catalytic activity of cytochrome P-450 [5,6]. Studies on the native enzyme and iron porphyrin model systems have helped scientists understand how cytochrome P-450 enzymes activate dioxygen and oxidize substrates [1,3].

    1.1. Synthetic Porphyrins

    Porphyrins are versatile compounds with potential use in different fields like medicine, catalysis, and electronics. The myriads of applications of these compounds stem from their singular physical and chemical characteristics, such as high stability, intense electronic absorption and emission, rigid planar geometry, and reactivity, among others. Over recent years, numerous processes for the synthesis of porphyrins have been developed.

    Porphyrins are highly conjugated tetrapyrrolic macrocycles consisting of four pyrrole rings linked via methine bridges. Alternating single and double bonds confer stability to the porphyrinic ring through resonance structures. A large number of porphyrins with different structures and features can be isolated from Nature [7] or synthesized in the laboratory [8,9,10]. Porphyrins can be obtained via one of two general routes: (i) a reaction involving a pyrrole intermediate [11,12] or (ii) chemical modification of naturally-occurring or synthetic porphyrins [13]. Furthermore, diverse porphyrinic macrocycles can be achieved by electrophilic aromatic substitution (nitration [14], halogenations [15], sulfonation [16], formylation [17], and acylation [18]), nucleophilic addition [19], nucleophilic aromatic substitution [20], and cycloaddition reactions [21].

    In the 1970s, Groves et al. [22] published the first paper on the use of a synthetic iron porphyrin as catalyst for the epoxidation of alkenes and hydroxylation of alkanes by iodosylbenzene. Since then, many authors have employed MPs with different metals to catalyze the oxidation of various organic substrates. New synthetic routes have also been designed, to improve the catalytic performance of these complexes.

    In 1997, Dolphin and Traylor [8] proposed a classification for the many MPs used in catalysis on the basis of their structures. These authors designated the first synthetic MP that Groves [22] employed in cytochrome P-450 biomimetic catalysis, [Fe(TPP)]Cl, as a first-generation porphyrin [Figure 2(a)]. This complex affords modest catalytic results, because the fragile porphyrin structure is easily destroyed under the oxidizing conditions of the catalytic reaction.

    Dolphin and Traylor [8] classified mesophenyl-substituted MP bearing electronegative and/or bulky groups as second-generation porphyrins [Figure 2(b)]. Such complexes afford fantastic catalytic results, mainly in the most difficult of all the oxidation reactions–alkane hydroxylation. Second-generation MPs perform better than first-generation catalysts because: (i) electron-withdrawing groups (EWG); e.g., halogen atoms make the catalytic intermediate species more electrophilic and therefore a more powerful oxidizing species; (ii) the bulky groups at the phenyl substituents avoid intermolecular interactions that can generate inactive catalytic species or promote the auto-oxidative destruction of MP in solution. Together, these two factors confer the second-generation porphyrins a more robust nature [8].

    Figure 2. Metalloporphyrins of the (a) first, (b) second, and (c) third generation, where X represents an EWG or bulky group and Y is a halogen atom.

    Figure 2. Metalloporphyrins of the (a) first, (b) second, and (c) third generation, where X represents an EWG or bulky group and Y is a halogen atom.

    The introduction of electronegative groups in the β-pyrrole positions of the ring of second-generation porphyrins give rise to porphyrin ligands of the third generation [Figure 2(c)]. At first, it was expected that the addition of extra EWG or bulky groups would render the macrocycle ring even more robust and resistant to oxidative self-destruction and increase the catalytic activity of MP, but most of the communications on third-generation MPs published in the past two decades have revealed that they do not furnish the same catalytic results as the second-generation counterparts [23,24,25,26,27,28,29,30,31]. In homogeneous catalysis, third-generation MP undergo inactivation for several reasons, consequently providing poor catalytic yields.

    One thought on “Metalloporphyrin Synthesis Essay

    Leave a Reply

    Your email address will not be published. Required fields are marked *